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The interaction of nonlinear Schrödinger solitons with extended inhomogeneities with modified nonlinear
coefficients is investigated numerically. Decreased nonlinear coefficients act as nonlinear potential steps and
yield transmission or reflection of the incoming soliton. For increased nonlinear coefficients �nonlinear poten-
tial wells� and a given range of initial velocities and nonlinearity mismatch, the scattering pattern exhibits
periodically repeating regions of trapping and transmission as a function of the length of the inhomogeneity. It
is shown that the escape of the soliton is due to a resonance between the period of the shape oscillations of the
soliton inside the inhomogeneity and the length of the latter. The combined effect of overlapping linear and
nonlinear potentials is also investigated.
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I. INTRODUCTION

The interaction of solitons with defects and inhomogene-
ities is a problem of considerable theoretical and practical
importance. Scattering of nonlinear Schrödinger �NLS� soli-
tons from point defects has been studied in �1–5� and of
topological solitons in �6–8�. It has been shown in particular
that kinks can be reflected by an attractive impurity via a
“two-bounce” resonance mechanism involving the excitation
and deexcitation of localized impurity modes �7�, or impurity
and shape modes �8�. Nonlinear impurity modes in the gen-
eralized NLS equation have been studied in detail in �9�. The
interaction of NLS solitons with strong localized inhomoge-
neities in the dispersion or nonlinear coefficients has been
studied in �10�. Recent investigations have been devoted to
the scattering of solitons from extended inhomogeneities
�11–13�, and nonclassical behavior has been obtained in
�14–18�. Resonant interaction of NLS solitons with wide po-
tential wells has been obtained in �19�. In the present work
we study the interaction of solitons with long �compared to
the soliton’s width� segments with modified nonlinearity.
While the interaction with segments with decreased nonlin-
earity �potential step� is similar to the classical-particle case,
the interaction with segments with increased nonlinearity
�potential well� exhibits nonclassical behavior, associated
with the wavelike character of the solitons. The scattering
pattern in this case yields periodically repeating regions of
trapping and transmission as a function of the width of the
nonlinear potential well.

II. SEGMENTS WITH MODIFIED NONLINEARITY

The NLS equation in the presence of a segment with
modified nonlinearity reads

i
��

�t
+

�2�

�x2 + 2�1 + d�x�����2� = 0,

d�x� = d for x1 � x � x2, d�x� = 0 otherwise, �1�

where we have assumed the nonlinear coefficient within the
segment to be uniform. For d�x��0, Eq. �1� possesses a
fundamental bright soliton solution

��x,t� =
1

L
sech

x − vt

L
ei�vx/2−�0t�, �0 =

v2

4
−

1

L2 , �2�

where L and v are the width and velocity of the soliton.
The numerical simulations are based on the discrete ver-

sion of Eq. �1� which describes the dynamics of nonlinear
Bose-type excitations in atomic and molecular chains. The
segment is modeled by N equal consecutive defects with
modified nonlinear coefficients:

i
��n

�t
+ ��n+1 + �n−1 − 2�n� + 2�1 + dn���n�2�n = 0,

dn = d for n1 � n � n2, n2 − n1 + 1 = N, dn = 0 otherwise.

�3�

For wide solitons compared to the lattice constant �2L�1�
the discreteness-induced effects are negligible and the solu-
tion �2� is stable on ideal lattices �with dn�0�. We checked
this numerically for solutions with L�4 over long-time
scales. In the simulations below we used the solution �2�
with L=5.75 as initial condition, placed 50 sites away from
the defect segment to avoid initial radiation decay due to
overlapping with the inhomogeneity. A predictor-corrector
method �20� was employed, periodic boundary conditions
and chains much longer than the defect region. In order to
eliminate boundary effects and the spurious interaction of the
soliton with emitted radiation revolving along the chain, we
introduced a damping term in Eq. �3� near the lattice bound-
aries. Without the damping term, the norm was conserved to
within less than 10−6 for the whole course of the simulations,
which guarantees the accuracy of the calculations.

The energy of the initial solution �2� when it is far from
the defect region is

Es = �
−�

� �	 ��

�x
	2

− ���4
dx =
v2

2L
−

2

3L3 � Ek − Enl, �4�

where the first term describes the kinetic energy of the free
quasiparticles and the second term the nonlinear-interaction
energy. The scattering pattern depends in general on the in-
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terplay between these two energies and the energy of inter-
action with the nonlinear defects Ed. Its maximal value, cor-
responding to a soliton placed in the center of the defect
region, is

Ed = − d�
−N/2

N/2

���4dx = −
2d

L3 tanh
N

2L
�1 −

1

3
tanh

N

2L

 .

�5�

For inhomogeneities much longer than the soliton extent
�N�2L�,

Ed = −
4d

3L3 . �6�

The effects studied below correspond to the case of “slow
solitons” with kinetic energy much smaller than the nonlin-
ear energy Ek�Enl. This preserves the integrity of the soli-
tons during the scattering. The scattering patterns depend in
general on the interplay between Ek and Ed. When Ek� �Ed�,
the solitons are not influenced significantly by the defects,
and for Ek� �Ed�, the solitons can break into reflected and
transmitted nonlinear and dispersive waves �1�. In the
present work we study the interaction of slow solitons with
extended nonlinear inhomogeneities with Ek��Ed�, in which
case interesting resonance phenomena occur.

For small defect strengths ��d��1� the loss of energy due
to emitted radiation at the boundary of the segment is small,
and the soliton energy and the norm are nearly conserved.
The conservation of energy reads

v0
2 −

4

3L0
2 = v2 −

4

3L2 , �7�

where v0, L0, v, and L are the soliton’s velocities and widths
in the ideal and defect regions, respectively. The conserva-
tion of the norm yields

L = L0/�1 + d� . �8�

Substituting Eq. �8� into Eq. �7� gives the following relation
between the velocities in the two regions:

v2 = v0
2 +

4d�2 + d�
3L0

2 . �9�

The role of the modified nonlinearity on the propagation
of the soliton can be evaluated from Eqs. �4� and �8�. When
it enters a segment with a smaller nonlinear coefficient �d
�0� its nonlinear energy decreases and in view of Eqs. �9�
and �4� this leads to a decrease of the velocity and kinetic
energy of the soliton. Thus a segment with decreased nonlin-
earity acts on the soliton as a nonlinear potential step. The
scattering pattern can be determined from Eq. �9� and de-
pends on the values of v0, L0, and d. Real final velocities
�0�v2�v0

2� correspond to transmission of the soliton
through the potential step, while imaginary values of v �v2

�0� correspond to exponentially decaying excitation inside
the segment. In the latter case the soliton is reflected from the
boundary. Figure 1 illustrates the scattering of a soliton with
v0=0.05 and L0=5.75 impinging on a segment with de-
creased nonlinear coefficients covering 100 lattice sites. The

simulations show that for d�−0.031 the soliton passes
through the segment and escapes to infinity �Figs. 1�a� and
1�b��, while for d�−0.032 it is reflected by the segment
�Fig. 1�c��. This is in excellent agreement with the threshold
value d=−0.0315 determined from Eq. �9�.

The most interesting case, however, is that of a segment
with an increased nonlinear coefficient �d	0�. This leads to
a decrease of the soliton’s width �8� and an increase of the
nonlinear energy �4� which acts as a nonlinear potential well.
The velocity of the soliton inside the segment increases, and
in the classical no-damping case the soliton should always
pass through such a segment. The numerical simulations,
however, showed a different picture: For initial velocities
below a lower threshold �d=0.2, v0�0.038� the solitons get
trapped inside the well and for velocities above an upper
threshold �v0	0.060� they pass through it and escape to in-
finity for any segment lengths. For initial velocities in the
intermediate region, the scattering pattern as a function of
the length of the segment exhibits periodically repeating re-
gions of transmission and capture. This is shown schemati-
cally in Fig. 2 where we have plotted the average final ve-
locity of the soliton as a function of the width of the segment
for different values of the initial velocity. The lower horizon-
tal parts �with zero final velocity� correspond to trapping of
the soliton inside the segment, and the upper horizontal parts
with positive final velocity correspond to transmission �the

FIG. 1. Transmission and reflection of a soliton from a potential
barrier for v0=0.05, L0=5.75, and N=100. �a� d=−0.027 and �b�
d=−0.031 transmission, �c� d=−0.032 reflection. The arrows on the
n axis mark the boundaries of the defect region.
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actual escape velocity varies smoothly in the transmission
regions�. The increase of the initial velocity �Fig. 2, curves 2
and 3� leads to wider regions of transmission and narrower
regions of trapping, while the period of repeat remains nearly
constant.

Figure 3 shows the periodic patterns of transmission and
capture for fixed initial velocity and two different nonlinear
coefficients. As can be expected, the smaller nonlinear coef-
ficient yields wider transmission regions and narrower trap-
ping regions and vice versa, while the total period is nearly
unchanged.

Figure 4 illustrates the evolutionary patterns correspond-
ing to transmission and capture. Sharp changes in the soliton
velocity mark the boundaries of the inhomogeneity. The ve-
locity of the soliton increases inside the well in accordance
with Eq. �9� and drops when it escapes �Fig. 4�a��. When
trapped �Fig. 4�b��, the soliton shuttles inside the well. It is
clearly seen that small-amplitude shape oscillations of the
soliton are excited at the boundary of the segment and persist
for a long time. In order to explain the periodic capture-
transmission patterns in Figs. 2 and 3 we looked for a corre-
lation between the period of these oscillations and the length
of the segment.

The scattering patterns shown in Fig. 2 have a period of
20 lattice sites. The spatial period of the shape oscillations is
not so well defined due to the variable velocity of the soliton
inside the segment. The temporal period of the oscillations,

however, can be determined with great accuracy from the
numerical data. The temporal period inside the inhomogene-
ity determined from Fig. 4 is T�140. It is important to note
that this period is measured on top of the soliton maxima—
i.e., in a frame moving with the soliton. The corresponding
temporal period of the soliton �for v=0� inside the defect
region is T=2
L0

2 / �1+d�2=144 and is in good agreement
with the measured one. A theoretical estimate of the spatial
period of the oscillations can be obtained from the following
considerations: when the soliton enters the nonlinear defect
segment, its shape, velocity, and frequency change. The ve-
locities inside the defect region determined from Eq. �9� for
d=0.2 and initial velocities v0=0.048–0.052 �Fig. 2� are v
=0.142–0.143. Hence the spatial period of the oscillations is
�x=vT=19.9–20.0. This is in excellent agreement with the
period of the observed capture-transmission patterns in Figs.
2 and 3. The above results show unambiguously that the
periodic patterns of trapping and transmission which we ob-
serve in the interaction of NLS solitons from extended non-
linear inhomogeneities are due to a resonance between the
length of the inhomogeneity and the spatial period of the
shape oscillations excited at the boundary or, equivalently,
the time for which the soliton crosses the inhomogeneity and
temporal period of the shape oscillations.

Shape oscillations of perturbed NLS solitons have been
studied by the inverse scattering transform �21–24� as well as
by small-amplitude perturbation expansion around the soli-
ton solution �26,27�. Both approaches yield oscillations with
frequency �1/L2. Within the second approach, the solution
of the perturbed NLS equation can be represented in the
form

��x,t� = 
�0�
� + �1�
�e−i�1t + �2
*�
�ei�1t�ei�vx/2−�0t�,

�10�

where

FIG. 2. Periodic regions of capture and transmission as a func-
tion of the number N of defects with d=0.2 for different initial
velocities v0. The lower horizontal parts �with v f =0� correspond to
capture and the upper ones �with v f 	0� to transmission. Curves 1,
2, and 3 correspond to v0=0.048, 0.050, and 0.052, respectively.

FIG. 3. Periodic regions of capture and transmission as a func-
tion of N for v0=0.05 and different depths of the potential well.
Curve 1 corresponds to d=0.18 and curve 2 to d=0.20.

FIG. 4. Evolutionary patterns for �a� transmission �N=97� and
�b� trapping �N=107� for v0=0.05 and d=0.2.
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�0�
� =
1

L
sech




L
, 
 = x − vt ,

is the solution of the unperturbed NLS equation and the
functions �1�
� and �2�
� describe the small-amplitude inter-
nal modes of the perturbed solution. They satisfy the linear
system of equations

�2�1

�x2 + �4�0
2 −

1

L2 + �1
�1 + 2�0
2�2 = 0,

�2�2

�x2 + �4�0
2 −

1

L2 − �1
�2 + 2�0
2�1 = 0. �11�

The spectrum of Eqs. �11� consists of a discrete eigen-
value �1=0 corresponding to a static perturbation of the soli-
ton and a band of continuous modes with frequency �1
= �1/L2+�2� �26,27�. The shape oscillations in Fig. 4 have a
period T=140 and a frequency 2
 /T=0.045, corresponding
to the band-edge frequency of the continuous modes inside
the segment ��1=1/L2=0.044, �=0�. The band-edge modes
are locked to the soliton, and the corresponding solutions are

�1�
� = a0�1 − sech2 


L

, �2�
� = − a0 sech2 


L
, �12�

where a0�1/L.
The periodic scattering patterns in Figs. 2 and 3 can be

explained qualitatively in the following way: when the soli-
ton reaches the nonlinear potential it interacts inelastically
with the boundary and loses part of its kinetic energy excit-
ing small-amplitude internal modes. The interference of
these modes with the soliton yields the observed shape os-
cillations �or breathing� of the soliton. When the oscillating
soliton reaches the second boundary, and different outcomes
are possible depending on the timing. In the nonresonant
case, the reduced kinetic energy of the soliton is not suffi-
cient to overcome the potential barrier represented by the
second boundary, and the soliton is reflected from it and
eventually gets trapped. However, the interaction of the os-
cillating soliton with the boundary is phase sensitive, and if
the time for which it crosses the potential well is commen-
surate with the period of the shape oscillations, the inelastic
interaction with the second boundary may extinguish the
shape oscillations, transferring their energy back into kinetic
energy of the translational motion and allowing the soliton to
overcome the barrier and escape to infinity which results in
transmission. The higher the initial velocity of the soliton,
the wider the transmission regions as seen from Fig. 2.

The escape mechanism described above is not obvious
from the three-dimensional plots in Fig. 4�a�, as the shape
oscillations persist outside the inhomogeneity too. However,
a closer inspection of the period of these oscillations reveals
a period of T=207, which corresponds to the soliton fre-
quency in the ideal part of the lattice ��0 with v=0�. Thus
the interaction of the oscillating soliton with the second
boundary is a complex �two-step� process: the shape oscilla-
tions with period T=140 are extinguished which allows the
soliton to leaves the inhomogeneity and new shape oscilla-
tions with T=207 are excited immediately.

An increase of the depth of the potential leads to wider
regions of trapping and narrower regions of transmission
�Fig. 3, curve 2�. The perturbation which the boundary in-
duces is stronger in this case, and a larger portion of the
kinetic energy of the soliton is transformed into shape
modes. Hence a more exact resonance condition is required
at the second boundary for the escape of the soliton, which
yields narrower regions of transmission. The period of the
scattering patterns in this case determined from Fig. 2 is 38
lattice sites, while the spatial period of the corresponding
shape oscillations deduced from Eq. �9� is 38.6. Again we
witness an excellent agreement between the two.

III. SEGMENTS WITH MODIFIED LINEAR AND
NONLINEAR COEFFICIENTS

In �19� we investigated similar resonant transmission ef-
fects in the interaction of solitons with wide potential wells
represented by a rectangular linear potential. It corresponds
to a segment with a decreased energy of the linear excitations
forming the soliton or, equivalently, to a decreased phase
velocity of the soliton’s carrier wave. It is interesting to
evaluate the combined effect of overlapping external linear
and nonlinear potentials. The NLS equation in the case of
overlapping inhomogeneities in the linear and nonlinear
terms reads

i
��n

�t
+ �n�n + ��n+1 + �n−1 − 2�n� + 2�1 + dn���n�2�n = 0,

�n = �, dn = d for n1 � n � n2, n2 − n1 + 1 = N ,

�n = dn = 0 otherwise. �13�

Depending on the signs of � and d, the two inhomoge-
neous terms can have additive or compensatory action. The
positive signs correspond overlapping linear and nonlinear
potential wells, and the combined effect is illustrated in Fig.
5, curve 1. As can be expected, the so-formed deeper poten-
tial well yields wider regions of trapping and narrower re-
gions of transmission. When � and d have opposite signs, the
perturbing potential is a combination of a linear potential
well and a nonlinear potential well or vice versa. The evolu-

FIG. 5. Capture-transmission-reflection patterns as a function of
N for overlapping linear and nonlinear potential wells v0=0.05 and
�=0.007. Curves 1, 2, and 3 correspond to d=0.02, 0.0, and −0.01,
respectively.
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tionary pattern for this case is shown in Fig. 5, curve 3, and
corresponds to a shallower potential well. It is worth noting
that a complete compensation in this case is not possible due
to the different shapes of the potentials.

In some rare cases the resonant condition for escape is
achieved after the soliton has crossed the defect region twice
in the forward and backward directions. This yields the ob-
served narrow dips in Fig. 5, curves 2 and 3, corresponding
to v f �0. They are analogous to the three-bounce resonances
observed in �25�. Due to the radiation losses at each bound-
ary, these higher-order resonances are very sharp, extremely
sensitive to the initial velocity, and difficult to observe.

IV. CONCLUSION

In summary, we have studied numerically the interaction
of slow NLS solitons with extended inhomogeneities in the
nonlinear coefficient with variable widths. For the case of
increased nonlinear coefficients and initial velocities within a
given range, we have obtained periodically repeating regions
of trapping and transmission as a function of the width of the

inhomogeneity. The observed scattering patterns are ex-
plained by an excitation and a following resonant deexcita-
tion of shape oscillations of the solitons at the boundaries of
the well. The analysis of these oscillations shows that they
are due to excitation of internal modes with frequency from
the band edge of the continuous spectrum. In the nonreso-
nant case, due to loss of kinetic energy, the solitons get
trapped inside the well. Whenever the time for which the
solitons cross the well is commensurate with the period of
the shape oscillations, the interaction with the second bound-
ary may extinguish the shape modes, adding their energy
back to the kinetic energy of the solitons and allowing the
latter to escape to infinity �transmission�. The combined ef-
fect of overlapping linear and nonlinear inhomogeneities
yields additive or compensatory action depending on the
signs of the coefficients.
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